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There has recently been great interest in calculating the light-scattering character- 
istics of small spherical particles having a radially inhomogeneous index of refraction [i- 
3]. This problem can be solved analytically only in certain special cases [i, 2], so it be- 
comes necessary to develop numerical methods of solving it [i, 3]. One of them is the meth- 
od of phase functions [4], enabling one to calculate fairly accurately the optical character- 
istics of radially inhomogeneous particles using relatively little computer time and opening 
up broad prospects for investigating the optics of such particles. Some problems associated 
with this method are still unsolved, however. No expressions have been found, in particular, 
to describe the behavior of phase functions near the center of a sphere, the use of which 
would enhance the accuracy of the results obtained. Nor are there criteria for estimating 
the accuracy of calculations by this method. Those gaps are filled in the present paper. 

Let us consider nonmagnetic and nonabsorbing spherical particles having a radially de- 
pendent index of refraction n(r). We assume that n(r) is a continuously differentiable 
function. We designate the particle's radius as a, the wave number of the incident radia- 
tion as k, and the particle's diffraction parameter as x = ka. According to the method of 
phase functions, the coefficients of the scattering series [i, 2, 5] are 

%(z)~"~('~)--~2(x~'4"~(z)"l(~) b f =  ' I  <x) gl (~)'-- *i (~') ~t (~) ( 1 )  
at = ~ (x) ,,,~ (,~) - ,~:~ (x) ~, ,~) ~ (x~ .% (4  ~ (x) - ~'t (x)g~ (x) 

where 

g~ (z) = cos 5~ (z) r (z) - sin 6~ (z) zz (x); 

.~ (x) = cos 5~ (x) -r (x) - -  sin C (x) xt (x); 
c i , t 

~'i (x) = cos ~z (x) *z (x) -- sin 87 (x) zl (x); 
0 e~ S X ~  t * W wl (x) .... r s o~ t ) ~pl (z) - -  sm 6l (x) ~l (x); 

5s w and 5~ c a r e  phase  f u n c t i o n s  s a t i s f y i n g  t h e  e q u a t i o n s  

A 5~ = (n ~ (P) --  t) [cos 67 (0) . !  (~)) --  sh~ 5~Z @ ~1 (P)] ~ - -  
dp 

- l~n (~: (@;'  [cos 6~ '~' (0) *~ (~) - s~n 6~ (p) z~ (0)] [cos 6 ~ (p) * i  (o) - ( 2 )  
- ~, ,  6F (p) z;  (o) ] ,  

~ = ( ~  (o) - t) [cos 6~ ( p ) , l  (~) - s i .  ~ (~) xl (~)]~ 

with the boundary conditions 

6~ (0) = ~ (0) = O; (3)  

~s and X~ are Riccati-Bessel functions; ~ are Riccati-Hankel functions of the first kind; 
CE(p) = ( ~ P / 2 ) ~ / a J s  XE(P) = ( ~ P / 2 ) ~ / 2 N s  ~s  = * s  + iXs  0 = kr ;  
r is the current coordinate. 

Let us find expressions describing the behavior of phase functions for p << s We write 
Eqs. (2) in the integral form 

P 

~ (~) = 1 & (~ (z) ~) [~os ~ - 

- -  I (z) , ,  (z) sin6~(z) X~(z)] s 
0 
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- [in (,,~ (~))]' [cos 6~ ~ (z) ,~ (z) - sin 6, (~) xz (z)] [cos 6, (~)** (~) - 

- ~in 6~(~) ~'~ (~)], ( 4 )  
P 

6, (~,} t' dz (,,' (z) b [cos 6, (z) , ,  (z) - -  sin , (z) X, (z) ] t  
0 

For  p << s t he  p h a s e s  a r e  so s m a l l  [6] t h a t  on t h e  r i g h t  s i d e s  of  Eqs.  (4)  we can r e t a i n  
o n l y  t h e  t e r ms  c o n t a i n i n g  cos  ~s and cos 5s t h e y  t h e n  become 

P 

6~ (~) .... .i' dz (n -~ (z) - -  1) ~ (z) - -  [1 ,  (n ~- (z))l'  , ~  ( z ) , ~  (z) ,  
( 5 )  

P 

6~ (p) = S d~ (n~ (z) - ~) ~ (z) .  
0 

These are the expressions that describe the behavior of phase functions for p << Z. Let us 
find the conditions of their applicability. The relations 

I cos 5~ (z) ,~ (z) t >> I sin 6~ (z))~, (z)1, I c~ 6~ (z) ,'t (z) l >> l sin 5~ (z) %~ (z)I, 
, . ~ , ( 6 )  

for 0 < p < a are used in the transition from (4) to (5). We use asymptotic expressions 
for Riccati-Bessel functions for 9 << s {[5], Eqs, (5.1) and (5.2)}: 

~~ (p) ,--, ~ f~  'I ~ V~ ( ~  
- '~' V e ~  k ~ )  ' z~ (t,) -~  - _ -  k2 ~ ) .  ( 7 )  

In accordance with (7), the first and second relations in (6) are equivalent to each other, 
as are the third and fourth. Since the phases are small, the conditions (6) can be written 

~,~ (~ >> } ~' (~.) ~ (z) l, ,~ (z) >> 1 ~ (z) ~ (~) I. (8) 

In accordance with (7), for small P Eqs. (5) have the form 
t 

r ,, pS l e o  "~2Z 

where n o and n o ' are the mean values of the index of refraction and its derivative. 
p << s we can neglect the second term in the expression for 6s w. 
the conditions (8) as 

( 9 )  

F o r  
Using (7) and (9), we write 

(10)  

or 

p2 
(11) 
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And this is the condition of applicability of the asymptotic form (5). From (ii) it follows, 
in particular, that near the center of a particle the functions 6s and 6s can be de- 
scribed by Eqs. (5) for any s 

We calculated 6s and 6s for radial profiles n(r): 

n(p) = (2 -- ( p / x ) 2 ) l / 2 ,  x = 5,0 (a Luneburg lens [2]); (12a) 

n(p) = t,5/(1 + 0,0051p2), x = 5,0 [t]. (125) 

In Fig .  la  we show the  f u n c t i o n s  65W(p) and 6sc(p)  ob t a ined  by so lv ing  Eqs. (2) ( p o in t s  
1 and 2) and those  in accordance  wi th  the  a sympto t i c  forms (5) (curves  3 and 4) fo r  the  pro- 
f i l e  (12a) ,  and in Fig .  lb we show the  f u n c t i o n s  5sw(p) and ~sC(p) fo r  the  p r o f i l e  (12b). 
Comparing the  s o l u t i o n s  of Eqs. (2) wi th  the  asympto t ic  forms (5) ,  we no te  f a i r l y  good agree-  
ment between (5) and 5s and 6s even fo r  p = 5, where the  c o n d i t i o n  (11) is  v i o l a t e d .  
For smal l  p the  a sympto t i c  forms (5) f u l l y  c o i n c i d e  wi th  the  s o l u t i o n s  of  Eqs. (2 ) .  

Using the  a sympto t i c  forms (5) enables  one to so lve  Eqs. (2) more a c c u r a t e l y .  The p o i n t  
i s  t h a t  numer ica l  i n t e g r a t i o n  of Eqs. (2) must begin a t  p > O, s ince  the  f u n c t i o n  X~(P) i s  
not  d e f i n e d  a t  zero .  Choosing the  i n i t i a l  va lues  of  the  phase f u n c t i o n s  in accordance wi th  
(5) enab les  one to  i n c r e a s e  the  c a l c u l a t i o n  accuracy .  

Using the  asympto t ic  forms (5) a l so  makes i t  p o s s i b l e  to  monitor  the  accuracy  in ca l cu -  
l a t i n g  the  s c a t t e r e d - f i e l d  c o e f f i c i e n t s  (1) c a l c u l a t e d  by the  method of phase f u n c t i o n s  or 
by some o the r  method [1] .  For t h i s  one must s u b s t i t u t e  the  phases 6s and 6~C(x) from 
(5) i n t o  Eqs. ( t ) .  I f  the  c o n d i t i o n  (11) i s  s a t i s f i e d  in the  e n t i r e  p a r t i c l e ,  the  qu an t i -  
t i e s  thus  found should agree wi th  the  c a l c u l a t e d  c o e f f i c i e n t s  as and b~. The c a l c u l a t i o n  
e r r o r s  can be e s t i m a t e d  from the  accuracy  wi th  which the  c o e f f i c i e n t s  a~ and b~ ob ta ined  
in the calculations agree with their values in accordance with the asymptotic forms (5). 

In Fig. 2 we give the quantity cz = las 2 + Ibs 2, calculated for the profiles (12a) 
and (12b) by the method of phase functions (points i and 2) and from Eqs. (5) (curves 3 and 
4), as a function of s For s exceeding the particle diffraction parameter x = 5.0, the 
curves almost coincide, which confirms the good accuracy of the calculations by the method 
of phase functions. 

We have thus considered the behavior of phase functions that are solutions of Eqs. (2), 
and have obtained asymptotic expressions (5) describing the behavior of the functions 6s 
and 6s for small p. The conditions of applicability (ii) have been established for the 
derived asymptotic forms. We show that using Eqs. (5) enables one to increase the accuracy 
of calculations by the method of phase functions. We also suggested a method of monitoring 
the accuracy in calculating scattered-field coefficients for particles with a radially in- 
homogeneous index of refraction. 

i. 

2, 

3. 
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CONVERGING SHOCK WAVES IN MEDIA WITH DECREASING DENSITY 

E. E. Lin, E. N. Pashchenko, and V. N. Pavelkin UDC 533.6.011.72 

A number of papers have studied the cumulation of shock waves (see, e.g., [i-8]. Here 
our specific interest is in investigating shock waves propagating into a decreasing density. 
For concentric convergent shock waves the problem was solved in [7] by the method of Whitham 
[6], with which one can evaluate the gas parameters on the wave front in the presence of a 
piston coming from infinity and generating a continuous inflow of energy in the focus region. 

In this paper we compare the solution of [7] with the results of an approximate study 
of instantaneous energy release (by a strong explosion) at the edge of a closed region with 
decreasing density of the medium toward the center. We also derived similar solutions 
for propagation of a spherical shock wave convergent toward the decreasing density in two 
limiting cases: the adiabatic and the isotherma I approximations. The latter regime of the 
process is linked with the stage of motion when radiative energy transfer appreciably affects 
the distribution of the flow parameters of the medium. In contrast with [7] the similarity 
study gave us both the law of motion of the wave front, and the distribution of flow parame- 
ters behind the front. 

I. We consider propagation of a shock wave toward a decreasing geometric section A and 
decreasing density of the medium P0 for two limiting laws of energy release at its boundary: 
i) exit of a steady strong shock wave generated by a piston moving in from infinity; 2) a 
strong explosion on a perfectly rigid wall bounding a region with variable A and P0. Physi- 
cally this means that in the first case the time for the shock wave to focus t, is much less 
than the time t o for the piston to reach the boundary of the region (t, << t~ and in the 
second case we have t, >> ~ (~ is the duration of the energy release). 

In Case i, applying the rule of characteristics from Whitham [6], we can obtain an equa- 
tion for the speed of the front of a strong shock wave in a region with decreasing A and P0: 

d In (D,p~An)/dx = 0. ( t .  t )  

Here x i s  t h e  c o o r d i n a t e  o f  t he  f r o n t ,  r e c k o n e d  f rom t h e  boundary  o f  t h e  r e g i o n  examined;  

= 1 / [ 1  + 2 /k  + $ 2 k / ( k  - 1 ) ] ;  g = 1 / [ 2  + J ~ k ] ( k - - ~ ] ;  and k i s  t h e  index  o f  a p o t y t r o p i c  
medium. Then from the  wave f r o n t  speed  D1, t h e  p r e s s u r e  a t  t he  f r o n t  Pl - P0D12, and t h e  
shock wave power Wz - plD1,  f rom Eq. ( 1 . 1 )  we o b t a i n  t h e  e x p r e s s i o n s  

01 .v  p~g (z)A -n  (x), Pl "" p~-2~ (x) A -2n (z), W 1 ~ p~-~ (x) A -3n (x). ( i .  2 )  

As k v a r i e s  in t he  r ange  1 1 / 9 - 3  t h e  c o r r e s p o n d i n g  v a l u e s  o f  t he  e x p o n e n t s  a r e  ~ = 0 . 1 8 8 ,  
0 .258 ,  ~ = 0 . 1 4 8 - 0 . 2 8 4 .  Th i s  means t h a t  t he  shock  speed  D z i n c r e a s e s  c o n t i n u o u s l y  as  t h e  
shock  p r o p a g a t e s ,  f o r  any laws o f  d e c r e s e  o f  P0 and A. The p r e s s u r e  Pl and t h e  power W 1 can 
e i t h e r  d e c r e a s e ,  remain  s t e a d y ,  or  i n c r e a s e ,  d e p e n d i n g  on t h e  c o m b i n a t i o n  o f  d e s c r i b i n g  laws 
f o r  P0 and A, s i n c e  in  t h e  r a n g e  of  k i n d i c a t e d ,  1 - 2~ > 0 and 1 - 3~ > 0. 

In  c a s e  2 t y p i c a l  p a r a m e t e r s  o f  t he  p rob l em a r e :  s u r f a c e  d e n s i t y  o f  e x p l o s i v e  e n e r g y  
i s  E0, t e s t  r e g i o n  r a d i u s  i s  R0, i n i t i a l  medium d e n s i t y  i s  p0(R) ,  where R = x0 - x i s  t h e  
radius of the shock wave front, and x 0 is the coordinate of the focus point. In this formu- 
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